
Beyond the Surface
Deep Dive into Kernel Observability with eBPF

Giacomo Belocchi

How to monitor what happens in the cluster?

How to monitor what happens in the cluster?

What if a Kubernetes administrator want to observe what happens?
🤯

Kernel

● User space where applications
run

● Applications can’t directly access
hardware resources

● Applications use the kernel
making syscalls

● File read/write, memory
accesses, … all go through the
kernel

Kernel - eBPF to the rescue

● Hooks inside the kernel

Kernel - eBPF to the rescue

● Hooks inside the kernel
● Or inside user space applications

Kernel - eBPF to the rescue

● Hooks inside the kernel
● Or inside user space applications
● When execution reach the hook

⇒ eBPF program is invoked
● eBPF program can access data

visible at the hook

Extending kernel functionalities for security/observability

Cluster

Extending kernel functionalities for security/observability

Cluster

Extending kernel functionalities for security/observability

● Security - check unexpected
behaviour, react, raising alerts

● Observability - generation of
visibility events and the collection
and in-kernel aggregation of
custom metrics based on a
broad range of potential sources

Cluster

eBPF hooks

Static Dynamic Kernel
tracing

Userland
Tracing

Tracepoints 🪝 🪝

Kprobes 🪝 🪝

Uprobes 🪝 🪝

USDT 🪝 🪝

 Kernel Tracepoints

● Pre-defined hooks in kernel for custom tracing
● Stable across kernel versions
● Used for debugging, performance analysis, real-time monitoring
● Mount debugfs

○ sudo mount -t debugfs nodev /sys/kernel/debug

Tracepoints are located everywhere

List of available tracepoints

sudo ls /sys/kernel/debug/tracing/events

Tracing syscalls

sudo ls /sys/kernel/debug/tracing/events/syscalls

Interacting with debugfs

● Inside each we have special purpose files: enable, format, filter
● Enable 'sched/sched_switch' tracepoint

○ echo 1 | sudo tee
/sys/kernel/debug/tracing/events/sched/sched_switch/enable

● Only trace when next process PID is 1000
○ echo 'next_pid == 1000' | sudo tee

/sys/kernel/debug/tracing/events/sched/sched_switch/filter

Tracepoint parameters

sudo cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat/format

Tracepoint parameters

sudo cat /sys/kernel/debug/tracing/events/syscalls/sys_enter_openat/format

Tracepoint hands on

● For security reasons we want to block access to /etc/passwd
● Applications use openat syscall to open a file
● eBPF program attached to the sys_enter_openat tracepoint

libbpf-bootstrap

● Scaffolding playground for eBPF development
● Contains examples with many different hooks
● Bundled with libbpf and bpftools (for x86-64 architecture only)
● Rely on kernel to be built with BTF (BPF Type Format) type information

○ CONFIG_DEBUG_INFO_BTF=y Kconfig
○ Metadata format to encode debug info related to BPF program/maps
○ See https://www.kernel.org/doc/html/latest/bpf/btf.html for more information about BTF
○ Some major Linux distributions come with kernel BTF already built in
○ List here

https://github.com/libbpf/libbpf?tab=readme-ov-file#bpf-co-re-compile-once--run-everywhere

https://www.kernel.org/doc/html/latest/bpf/btf.html
https://github.com/libbpf/libbpf?tab=readme-ov-file#bpf-co-re-compile-once--run-everywhere

libbpf-bootstrap - setup

● Dependencies install (Ubuntu)
○ sudo apt-get update -y
○ sudo apt-get install -y make gcc clang libelf1 libelf-dev zlib1g-dev

● Clone the repository and submodules
○ git clone --recurse-submodules

https://github.com/libbpf/libbpf-bootstrap.git

● For convenience here’s a repo with Docker+scripts
○ https://drive.google.com/drive/folders/1GECYcQnQBzJdlLQKVdJA5K7zARkRBXMM?usp=sha

ring

https://github.com/libbpf/libbpf-bootstrap.git
https://drive.google.com/drive/folders/1GECYcQnQBzJdlLQKVdJA5K7zARkRBXMM?usp=sharing
https://drive.google.com/drive/folders/1GECYcQnQBzJdlLQKVdJA5K7zARkRBXMM?usp=sharing

libbpf-bootstrap - structure

libbpf-bootstrap - structure

libbpf-bootstrap - structure

libbpf-bootstrap - structure

libbpf-bootstrap - structure

Makefile

Openat tracepoint programs

● ebpf_day_tracepoint.c
○ Loads eBPF program

(ebpf_day_tracepoint.bpf)
○ Attach it to the tracepoint
○ Wait for termination
○ De-attach program

● ebpf_day_tracepoint.bpf.c
○ Actual eBPF code triggered by

the tracepoint
○ Controls what file is trying to be

open
○ If is /etc/passwd react!

User space

Kernel space

Let’s see it in action

Kernel Probes (Kprobes)

● Breakpoints in the kernel code
for inspection or modification of
kernel behavior at runtime

● Ability to insert probes on almost
any kernel symbol at runtime
○ the symbol has to be

exported by the kernel
(EXPORT_SYMBOL macro)

● Handlers can gather/modify
function data

Kprobe hands on

● For observability reasons we want to track what files are deleted
● Applications use unlink syscall to open a file

Unlink syscall

Unlink syscall

Kprobe for do_unlinkat

● Available kprobes in /proc/kallsyms file

Let’s see it in action

Real world examples - Tetragon

● Real time eBPF-based Security
Observability and Runtime
Enforcement

● Detect and to react to
security-significant events

● Cilium’s component
● Cilium is used by many big

players https://cilium.io/adopters/

https://cilium.io/adopters/

Real world examples - Falco

● Real time detection of
unexpected behavior,
configuration changes, attacks

● Custom rules on kernel events
enriched with containers
metadata

● Notable users like AWS, IBM,
Red Hat

○ https://github.com/falcosecurity/fal
co/blob/master/ADOPTERS.md

https://github.com/falcosecurity/falco/blob/master/ADOPTERS.md
https://github.com/falcosecurity/falco/blob/master/ADOPTERS.md

Useful resources

● https://docs.cilium.io/en/latest/bpf/
● https://eunomia.dev/tutorials/
● https://douglasmakey.medium.com/beyond-observability-modifying-syscall-be

havior-with-ebpf-my-precious-secret-files-62aa0e3c9860
● https://nakryiko.com/posts/bcc-to-libbpf-howto-guide/#bpf-skeleton-and-bpf-ap

p-lifecycle
● https://nakryiko.com/posts/libbpf-bootstrap/

https://docs.cilium.io/en/latest/bpf/
https://eunomia.dev/tutorials/
https://douglasmakey.medium.com/beyond-observability-modifying-syscall-behavior-with-ebpf-my-precious-secret-files-62aa0e3c9860
https://douglasmakey.medium.com/beyond-observability-modifying-syscall-behavior-with-ebpf-my-precious-secret-files-62aa0e3c9860
https://nakryiko.com/posts/bcc-to-libbpf-howto-guide/#bpf-skeleton-and-bpf-app-lifecycle
https://nakryiko.com/posts/bcc-to-libbpf-howto-guide/#bpf-skeleton-and-bpf-app-lifecycle
https://nakryiko.com/posts/libbpf-bootstrap/

Thanks for the attention!
📧 giacomo.belocchi@uniroma2.it

