
Revolutionizing the
ICT Landscape

Sebastiano Miano
eBPF Day, Rome, 13 March 2024

?What is

Accurate
definition

is a
programming

language & runtime to
extend operating systems

Practical
comparison

is like JavaScript/Lua
but for Kernel Developers

</>
Process

O
pe

ra
tin

g
Sy

st
em

execve(
)

System Calls

?Why

Operating Systems are like
hardware, hard to change
and with long innovation

cycles

Long Innovation
Cycle

Rapid Innovation
Cycle

9

Before eBPF

Long Innovation
Cycle

Rapid Innovation
Cycle

11

After eBPF

How
was born?

13

The era of Network Function
Virtualization

Content Server

DPI

Firewall

L2 SwitchRouter

Traditional Network Appliance
Approach

Network Function Virtualization
Approach

Bridge Router DPI

Firewall Conten
t Server

Standard Servers

Shift in the Networking Business

DPI
L2 Switch

Router

Hardware
Business

Software
Business

Shift in the Networking Business in
2024

Hardware
Business

Software
Business

Hardware
+ Software
Business

+

End of Moore Law
& Dennard Scaling

Which problem we were
trying to solve?

• With NFV, the single server
takes a prominent role in
networking

• Most of the servers are Linux-
based, however…

• …at that time the Linux kernel
was focusing only on bridging
and routing

Move packets efficiently across servers

Linux Tux: “Innovation? Nah…”

Storyline

PLUMgrid and the
idea of custom

networking
functions in the

kernel

2012-
2014

PLUMgrid: Where started
• The idea of PLUMgrid was to

create a collection of “plumlets”
connected to perform custom
networking.
• Those plumlets can be loaded in

the kernel
• Enforce safety of loaded programs

into the kernel using a customized
language, compiler, like Rust

Key feature #1

#1: Runtime bytecode injection
• eBPF programs can be dynamically created and injected in

the kernel at run-time
• Vanilla Linux kernel, without any patch
• No additional kernel module
• Obviously, no need to recompile the kernel

Linux host

User space

Bytecode
injection
(@runtime)

eBPF Program BPF
Sandbox

Kernel space

Network packets

VM1 VM2

22

Alexei Starovoitov: The God of
• One day, Alexei hit a “bug” that was

causing the host to crash after
hours of networking traffic
• He recognized that we cannot trust

the compiler, but we need
something in the kernel that
verifies the code itself

Key feature #2

25

#2: In-kernel verifier!
• Linux kernel must be protected from erroneous or malicious

injected programs
• Achieved with a sandbox that prevents possible critical conditions

at run-time
• A verifier checks the code and refuse to inject it in the sandbox
• No invalid memory accesses
• Bounded program size
• Bounded max number of instructions

• Consequence: eBPF does not support completely arbitrary
programs
• Even if the eBPF language is Turing complete

In-kernel verifier! Yeah…but how to
do it?
• Since he had to change the

compiler to support this new
language, he invented its own
instruction set!

In-kernel verifier! Yeah…but how to
do it?

This is cool!
But we need
to upstream

it!

Storyline

Alexei working
at PLUMgrid

2012-
2014

First eBPF
patch set.

2014

Linux Tux: “Innovation? Nah…”

31

The Berkeley Packet Filter (BPF)
• Generic in-kernel, even-based

virtual CPU
• Introduced in 1993 paper from

Lawrence Berkeley National
Laboratory
• Available in Linux kernel 2.1.75

(1997)
• Initially used as packet filter by

packet capture tool tcpdump (via
libpcap)

• In-kernel
• No syscall overhead, kernel/user

context switching
• Process as soon as the event

comes

BPF subsystem

filter filter filter

User
App1

User
App2

User
App3

kbuffe
r

kbuffe
r

kbuffe
r

NIC
driver

NIC
driver

Linux
Network

Stack

Userspace
Kernel

libpcapubuffe
r

libpcapubuffe
r

libpcapubuffe
r

32

Special purpose Virtual CPU
• Ad-hoc execution environment specially crafted for packet

filtering purposes
• E.g., specific memory for packets (separated from the main RAM)

• vCPU interpreter
Virtual CPU

Registers

ALU

Control unit

Main
memory

(RAM)

Packet
memory

General
purpose

Accumulator

Program
counter

IN port(s) OUT port(s)

Triggering
event:
 packet
received

Example of BPF injected code

Filter: “ip” (with simple Ethernet frames)

(000) ldh [12]
(001) jeq #0x800 jt 2 jf 3
(002) ret #96
(003) ret #0

Storyline

Alexei working
at PLUMgrid

2012-
2014

First eBPF
patch set.

2014

Key feature #3

35

#3: Efficiency with JIT compilation
• eBPF programs consumes a little amount of resources
• They executes in kernel space, potentially close to when

packets are received (no need to copy packets as when we
move them from kernel to user)
• BPF bytecode is either
• interpreted
• translated into native assembly code with a Just-in-time translator

(JIT)1. Restricted C - eBPF Code
static void init_array()
{
 int key;
 for (key = 0; key < 1000; key++) {
 bpf_update_elem(map_fd[0],
 &key, &value1, BPF_ANY);
 }
}

2.eBPF bytecode
l0: ldh [12]
l1: jeq #0x800, l3, l2
l2: jeq #0x805, l3, l8
l3: ld [26]
l4: jeq #SRC, l4, l8
l5: ld len
l6: jlt 0x400, l7, l8
l7: ret #0xffff
l8: ret #0

3. x86 assembly
mov eax, [ebp+8]
mov esi, [ebp+12]
mov edi, [ebp+16]

mov [ebp-4], edi
add [ebp-4], esi
add eax, [ebp-4]

Compiler
(userspa
ce tool)

in-kernel
JIT

Storyline

Alexei working
at PLUMgrid

2012-
2014

First eBPF
patch set.

2014

eBPF exposed
to userspace

37

The extended Berkeley Packet Filter
(eBPF)
• Officially part of the Linux kernel since 3.15
• In practice, kernel 4.x are required to take advantages of the more

advanced features
• Continuously evolving platform

• Naming:
• Initially, new eBPF was identified with “eBPF”, and old BPF called

“Classic BPF” or “cBPF”
• Recently (2018), people tend to refer to this technology simply as

“BPF”
• The “cBPF” has been now replaced and it is converted to eBPF in newer

kernels

Storyline

Alexei working
at PLUMgrid

2012-
2014

First eBPF
patch set.

2014

eBPF exposed
to userspace

eBPF backend
merged into

LLVM compiler
suite

cls_bpf makes
Linux

networking
programmable

2015

is just for
Networking?

A new use case for
• Brendan was looking for tools and

approaches to perform kernel
tracing
• Lots of existing tools were not

usable and half finished
• None of them was able to do what

they needed

Key feature #4

42

#4: React to generic kernel events
• eBPF code is hooked to a kernel

event
• When fired, your code (associated to

an event handler) is executed
• Some possible events:
• Network packet received
• Message (socket-layer) received
• Data written to disk
• Page fault in memory
• File in /etc folder being modified

• In general, any kernel event can be
potentially intercepted NIC

Driver

Kernel Core

Applicatio
n

PCIe

user
spac

e

kern
el

spac
e

Storyline

Alexei working
at PLUMgrid

2012-
2014

First eBPF
patch set is
merged into

the Linux
Kernel.

2014

eBPF backend
merged into

LLVM compiler
suite

cls_bpf makes
Linux

networking
programmable

2015 2016

XDP enables high-
performance datapath

for LB and DDoS
mitigation

Storyline

Alexei working
at PLUMgrid

2012-
2014

First eBPF
patch set is
merged into

the Linux
Kernel.

2014

eBPF backend
merged into

LLVM compiler
suite

cls_bpf makes
Linux

networking
programmable

2015 2016

XDP enables high-
performance datapath

for LB and DDoS
mitigation

Sebastiano
started working

with eBPF!

Key feature #5

48

#5: eBPF Hook points
• Several hook points (a.k.a. kernel events) for

networking:
• Located at different levels of the stack
• Opens the possibility to implement packet

processing programs at different layers of the
stack

• Some of interest:
• eXpress Data Path (XDP)
• Traffic Control (TC)
• Socket SKB (SK_SKB)
• There are many more…

GRO
Netfilter
TCP/IP

Application

 Socket

Buffer

Driver

NIC

XDP

TC

SK_SK
B

Key features #N

I want more features!
• #6: eBPF Helpers
• Functions that are implemented natively in the Linux kernel, which

are available as an assembly call

I want more features!
• #6: eBPF Helpers
• Functions that are implemented natively in the Linux kernel, which

are available as an assembly call
• #7: Persistent storage
• Data access arbitrated by structures called maps

• Key/value storage of different types
• Array, HashMap, LRUMap..

Applicati
on

ma
p

user
kerne

l

I want more features!
• #6: eBPF Helpers

• Functions that are implemented natively in
the Linux kernel, which are available as an
assembly call

• #7: Persistent storage
• Data access arbitrated by structures called

maps
• Key/value storage of different types
• Array, HashMap, LRUMap..

• #8: Service chains
• eBPF programs can be chained together to

create complex (and modular) services
• Enable to split a complex function in multiple

components

eBPF prog
A

eBPF prog
C

eBPF prog
B

entry point

exit point

More details in the next talks!

How does work?

language

runtime

language

source
code

Clang

LLVM

eBPF bytecode

cilium/ebpflibbpf-rs | redbpf | Aya
rust

libbpfbcc

multiple SDKs and
compilers exist to get
to the eBPF bytecode

57

eBPF toolchain – Source code
• eBPF code is written in restricted C

(compilers exist for other languages)
Clang

LLVM

Verifier

Interpret
er

JI
T

source
code

Kernel

58

eBPF toolchain – LLVM IR
• The code gets processed by Clang, a

compiler front end for C-style
programming languages
• There should also be support for eBPF on

GCC, but Clang is the most used

Clang

LLVM

Verifier

Interpret
er

JI
T

source
code

IR

Kernel

eBPF toolchain – LLVM IR
• The code gets processed by Clang, a

compiler front end for C-style
programming languages
• There should also be support for eBPF on

GCC, but Clang is the most used

• LLVM converts the C code into an
Intermediate Representation (IR)
• Performs several optimizations
• Generates the final eBPF assembly

assembly

IR

Clang

LLVM

Verifier

Interpret
er

JI
T

source
code

Kernel

runtime

The runtime accepts bytecode, verifies it, just-in-time
compiles it, and runs it at the requested hook point

Who controls ?

Where is
used today?

Cloud-
native

landsca
pe

Application
Observability

Networking &
Service Mesh

Security

Inspektor
Gadget Tetragon Tracee Falco

Hyperscalers using

Fast, -based
L4 load-balancer used at

Facebook/Meta

https://github.com/facebookincubator/k
atran

https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran

Cloud providers using

-based Networking & Security
All major cloud providers have picked

for their Kubernetes platforms

Smartphones with

*
https://source.android.com/docs/core/architecture/kern
el/bpf

https://source.android.com/docs/core/architecture/kernel/bpf
https://source.android.com/docs/core/architecture/kernel/bpf

For windows

More Projects

hBPF:
eBPF in hardware

Layer 4 Kubernetes LB
A system daemon and
Kubernetes operator
for managing eBPF

programs

BumbleBee
OCI

compliant
eBPF tooling

Caretta
eBPF based Kubernetes

service map

DeepFlow
Highly Automated

Observability Platform
powered by eBPF

eunomia-bpf
eBPF programs in a
WASM module or

JSON

eCapture
SSL/TLS capture tool

using eBPF

Kindling
eBPF-based Cloud
Native Monitoring

& Profiling Tool

More Projects

KubeArmor
Container-aware
Runtime Security

Enforcement System

L3AF
Complete lifecycle

management of eBPF
programs

LoxiLB
eBPF based cloud-

native load-balancer
for 5G Edge

Merbridge
Use eBPF to speed up your
Service Mesh like crossing
an Einstein-Rosen Bridge

Parca
Continuous

Profiling Platform

ply
A dynamic

tracer for Linux

Pulsar
A modular runtime
security framework

for the IoT

pwru
eBPF-based Linux

kernel network
packet tracer

More Projects

Pyroscope
Continuous Profiling

Platform

SSHLog
eBPF SSH session

monitoring

wachy
UI for interactive

eBPF-based userspace
performance
debugging

is a cool technology

It allowed us to do something
that was unthinkable before.

Operating Systems can now be
programmed, at runtime!

is not just
Networking

…but also…

Observabil
ity

Securi
ty
Stora
geScheduli

ng

TETRIS
• https://github.com/mmisono/bpftrace-tetris

Who is using

Hyperscalers

Cloud-providers

Projects & Startups

…but the most important
thing is that…

…although Sebastiano
started working with eBPF

from the beginning…

	Revolutionizing the ICT Landscape
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Before eBPF
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	The era of Network Function Virtualization
	Shift in the Networking Business
	Shift in the Networking Business in 2024
	Diapositiva 16
	Move packets efficiently across servers
	Linux Tux: “Innovation? Nah…”
	Storyline
	PLUMgrid: Where started
	Diapositiva 21
	#1: Runtime bytecode injection
	Alexei Starovoitov: The God of
	Diapositiva 24
	#2: In-kernel verifier!
	Diapositiva 26
	In-kernel verifier! Yeah…but how to do it?
	In-kernel verifier! Yeah…but how to do it? (2)
	Storyline (2)
	Linux Tux: “Innovation? Nah…” (2)
	The Berkeley Packet Filter (BPF)
	Special purpose Virtual CPU
	Storyline (3)
	Diapositiva 34
	#3: Efficiency with JIT compilation
	Storyline (4)
	The extended Berkeley Packet Filter (eBPF)
	Storyline (5)
	Diapositiva 39
	A new use case for
	Diapositiva 41
	#4: React to generic kernel events
	Storyline (6)
	Storyline (7)
	Diapositiva 47
	#5: eBPF Hook points
	Diapositiva 49
	I want more features!
	I want more features! (2)
	I want more features! (3)
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	eBPF toolchain – Source code
	eBPF toolchain – LLVM IR
	eBPF toolchain – LLVM IR (2)
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72
	Diapositiva 73
	Diapositiva 74
	Diapositiva 75
	Diapositiva 76
	Diapositiva 77
	TETRIS
	Diapositiva 79
	Diapositiva 80
	Diapositiva 81
	Diapositiva 82
	Diapositiva 83
	Diapositiva 84
	Diapositiva 85

