
eBPF for networking

Stefano Salsano – University of Rome Tor Vergata

stefano.salsano@uniroma2.it

• We have reused public material available in several

presentations authored by:

Fulvio Risso, Thomas Graf, Michael Kehoe, Fabian Ruffy,

Suchakrapani Sharma, Sebastiano Miano

(full references at the end)

2

Ackowledgements

• Recall on some eBPF features

3

eBPF architecture

4https://hsdm.dorsal.polymtl.ca/system/files/eBPF-5May2017%20(1).pdf

Hooks

eBPF main features

• The eBPF VM implements a RISC-like assembly language in kernel space:

User-defined, “sandboxed” bytecode executed by the kernel

• The eBPF Linux module enables arbitrary code to be dynamically injected and

executed in the Linux kernel

• eBPF provides hard safety guarantees in order to preserve the integrity of the

system (e.g. eBPF does not allow unbounded loops) – eBPF Verifier

• Several “hooks” in the kernel, used to “trigger” eBPF programs (event based)

• All interactions between kernel / user space are done through eBPF “maps”

5

eBPF main features – safety / verifier

• eBPF provides hard safety guarantees in order to preserve the integrity of the

system (e.g. eBPF does not allow unbounded loops) – eBPF Verifier

• “Sandbox” approach => no invalid memory access

• The Verifier checks that the program has a maximum number of instructions (no

unbounded loops) and that all accesses to memory are valid

• Main consequences:

• eBPF cannot execute arbitrary code (it’s not “Turing complete”)

• the verification is done “statically” by checking all execution paths.

Heuristics needs to be used to speed up the verification

• “false positives” : programs that are rejected by the verifier although they are valid

6

eBPF main features - hooks

• Several “hooks” in the kernel, used to “trigger” eBPF programs (event based)

• An event in the kernel can execute the eBPF code associated with its “event handler”

• Example events:

• Network packet received

• Message (socket layer) received

• Data written to disk

• Page fault in memory

• File in /etc folder being modified

7http://site.ieee.org/hpsr-2018/files/2018/06/18-06-18-IOVisor-HPSR.pdf

Networking related

Other than Networking

eBPF main features - hooks

• Several “hooks” in the kernel are used to “trigger” eBPF programs (event based)

• not only for networking!

8https://www.slideshare.net/ThomasGraf5/ebpf-rethinking-the-linux-kernel

Hooks

eBPF hooks and program types

9

https://cyral.com/blog/how-to-ebpf-accelerating-cloud-native/

• For a given hook, a specific eBPF

“program type” can be invoked.

• The “context” which is passed to

the eBPF program depends on the

hook.

• The capabilities of the eBPF

program depend on the hook, i.e.

different interactions with kernel

(helper functions) can be invoked.

eBPF program types

10

https://www.slideshare.net/MichaelKehoe3/ebpf-basics-149201150

eBPF main features - maps

• All interactions between kernel / user space are done through eBPF “maps”

• The maps can be shared with user space

applications and among eBPF programs

• The eBPF programs are “stateless”:

the state is stored in the maps

• The maps helps dealing with concurrency

• Per-CPU maps

11http://site.ieee.org/hpsr-2018/files/2018/06/18-06-18-IOVisor-HPSR.pdf

eBPF maps

12https://www.slideshare.net/ThomasGraf5/ebpf-rethinking-the-linux-kernel

eBPF maps

13https://www.slideshare.net/MichaelKehoe3/ebpf-basics-149201150

HASH - A hash table

ARRAY- An array map, optimized for fast lookup speeds
PROG_ARRAY - An array of FD’s corresponding to eBPF programs

PER_CPU_ARRAY - A per-CPU array, used to implement histograms

PERF_EVENT_ARRAY - Stores pointers to struct perf_event

CGROUP_ARRAY – Stores pointers to control groups

PER_CPU_HASH – A per-CPU hash table
LRU_HASH - A hash table that only retains the most recently used items

LRU_PER_CPU_HASH - A per-CPU hash table that only retains the most recently used items

LPM_TRIE - A longest-prefix match true, good for matching IP addresses

STACK_TRACE - Stores stack traces

ARRAY_OF_MAPS - A map-in-map data structure
HASH_OF_MAPS – A map-in-map data structure

DEVICE_MAP - For storing and looking up network device references

SOCKET_MAP – Stores and looks up sockets and allows redirection

• eBPF for networking

14

Networking scenarios

15

Routers

Servers

End Hosts

Firewall

Virtual Network

Functions (VNFs)

Datacenter

Dataplane processing

• Routing

• Tunneling (encap/decap, e.g. VXLANs)

• NATs - NAPTs

• Firewalls

• Load Balancers

• Application-level processing

• Deep packet inspection

16

Different types of processing

• Which are the design choices for a “Software routers” or a

“Packet processing device”, based on:

• Generic purpose processors

• Linux OS

• with the (obvious) goal to optimize the performance…

17

Dataplane Softwarization

Routers/Universal CPEs etc

L2 Switch

VLAN/ Q-inQ

L3 Router

NAT

ACL (mac, ip, port)

18

Different types of processing

Broadband Network Gateway

L2 Switch

L3 Router

Classification

hQoS

ACL

TM (Policing, Metering)

Cloud Load Balancer

Bonding

VLAN / Q-in-Q

NAT

ACL (blacklist)

TM (policing, metering) L4

Load Balancer

Intrusion Prevention System

L2 Switch

L3 Router

Classification

NAT

ACL (mac, ip, port)

Forwarding and processing

framework/tools

• Linux Kernel

• VPP (FD.io)

• OvS (Open vSwitch)

• Cilium

19

Key requirements :
support for new services & performance

Acceleration frameworks

(“fast IO”)

• DPDK (Hardware acceleration)

• Netmap

• eBPF

Solutions

Packet processing in Linux kernel
(very simplified)

20

NIC NIC

User space

Kernel space

Driver Driver

Sockets

Read Write

Local processes

Input Output

Local

Forward

Packet processing in Linux kernel

21

Source: https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg

Key issues

22

NIC NIC

User space

Kernel space

Driver Driver

Sockets

Read Write

Local processes

Input Output

Local

Forward

Swapping from kernel to user

and viceversa kills performance

Key issues

23

NIC NIC

User space

Kernel space

Driver Driver

Sockets

Read Write

Local processes

Input Output

Local

Forward

Kernel processing is

designed for

“generality” and is not

optimized for specific

use cases

Kernel bypass solution (e.g. DPDK)

24

NIC NIC

User space

Kernel space

Driver Driver

Sockets

Read Write

DPDK user space programs

Input Output

Local

Forward

DPDK

Driver

DPDK

Driver

Kernel bypass solution (e.g. DPDK)

25

Network Interface Cards (NICs)

User space

Kernel space

Network Driver

Linux Kernel

Applications

Network Interface Cards (NICs)

Network Driver

Linux Kernel

Applications

Without DPDK With DPDK

Poll-Mode Driver (PMD),

dedicated CPU(s)

• Coexistence/integration with kernel-based processing

• Hardware independence

• Complexity of interaction with existing features

• Security issues / risks of “freezing” the kernel

• Performance aspects

26

Considerations for in-kernel solutions

Overall requirements

Issues to be solved…

eBPF provides an “in-kernel” solution addressing the issues

• Complexity… well defined interaction model with “hooks”

• Security / “freezing” “restricted” language, Virtual Machine,

verification approach

• Performance aspects specific hooks offer “high performance”

27

eBPF - extended Berkeley Packet Filter

Recall of eBPF features

28

driver

Hardware

XDP

Bridge hook

IP/routing

socketKernel

space

User space

eBPF XDP hook point

Your

Program

A programmable data plane in the Linux kernel!

https://ruffy.eu/presentations/p4c-xdp-lpc18-presentation.pptx

• Virtual Machine (or Virtual CPU) running in the
Linux kernel

• Provides:

• The ability to write restricted C and run it in the kernel

• A set of kernel hook points invoking the eBPF program

•Extensible, safe and fast

•Alternative to user-space networking

eBPF hooks (for networking)

29http://site.ieee.org/hpsr-2018/files/2018/06/18-06-18-IOVisor-HPSR.pdf

eBPF program types (for networking)

30https://www.slideshare.net/MichaelKehoe3/ebpf-basics-149201150

SOCKET-RELATED
• SOCKET_FILTER: Filtering actions (e.g. drop packets)

• SK_SKB: Access SKB and socket details with a view to redirect SKB’s
• SOCK_OPS – Catch socket operations

CGROUPS
• CGROUP_SKB – Allow or deny network access on IP egress/ ingress

• CGROUP_SOCK – Allow or deny network access at various socket-related events

LIGHTWEIGHT TUNNELS

• LWT_IN – Examine inbound packets for lightweight tunnel deencapsulation
• LWT_OUT – Implement encapsulation tunnels for specific destination routes

• LWT_XMIT – Allowed to modify content and prepend a L2 header

TRAFFIC CONTROL

• SCHED_CLS: A network traffic-control classifier
• SCHED_ACT: A network traffic-control action

XDP
• XDP: Allows access to packet data as early as possible (DDoS mitigation/ Load-balancing)

Packet processing in Linux kernel

31

Source: https://commons.wikimedia.org/wiki/File:Netfilter-packet-flow.svg

XDP_GENERIC

XDP_NATIVE

TC_INGRESS TC_EGRESS

SOCKET

Socket buffers (sk_buff)

32

• The socket buffer (abbreviated as sk_buff) is the fundamental data
structure used to represent network packets

struct sk_buff {

struct sk_buff *next; // next sk_buff in the list

struct sk_buff *prev; // previous sk_buff

struct sk_buff_head *list; //list we are on

struct sock *sk; // socket we belong to

struct timeval stamp; //arrival timestamp

struct net_device * dev; // “output” device

… many other!!!

Socket buffers (sk_buff)

33

• sk_buffs contains the attributes and metadata associated with a
packet, allowing the kernel to handle packet processing, routing, and
transmission

union {

struct iphdr *iph;

struct ipv6hdr *ipv6h;

struct arphdr *arph;

…

} nh; //network level header

//(ip, ipv6, arp….)

union {

struct tcphdr *th;

struct udphdr *uh;

struct icmphdr *icmph;

…

} h; //transport level header

//(tcp, udp, icmp….)

eBPF helper functions (“BPF-helpers”)

BPF-helpers are “offered” by the Linux kernel and can be called from eBPF

programs. For example, they can be used to:

• print debugging messages

• get the time since the system was booted

• interact with eBPF maps

• manipulate network packets

More that 150 BPF-helpers are listed in the man page:

https://man7.org/linux/man-pages/man7/bpf-helpers.7.html

Caveat: “This manual page is an effort to document the existing eBPF helper functions. But as of this writing, the

BPF sub-system is under heavy development. New eBPF program or map types are added, along with new helper

functions. Some helpers are occasionally made available for additional program types. So in spite of the efforts of

the community, this page might not be up-to-date.”

34

Network namespaces

35

• Linux kernel keeps networking resources separated into “namespaces”

Routes

Main namespace Namespace 1 Namespace 2

Interfaces

Sockets

….

Routes

Interfaces

Sockets

….

Routes

Interfaces

Sockets

….

Thank you. Questions?

Contacts

Stefano Salsano

University of Rome Tor Vergata

stefano.salsano@uniroma2.it

36

References

• Fabian Ruffy, Linux Network Programming with P4
https://ruffy.eu/presentations/p4c-xdp-lpc18-presentation.pptx

• Michael Kehoe, (c|e)BPF Basics

https://www.slideshare.net/MichaelKehoe3/ebpf-basics-149201150

• Michael Kehoe, eBPF Workshop

https://www.slideshare.net/MichaelKehoe3/ebpf-workshop

• Fulvio Risso, Toward Flexible and Efficient In Kernel Network Function Chaining with

IOVisor, IEEE HPSR 2018,

http://site.ieee.org/hpsr-2018/files/2018/06/18-06-18-IOVisor-HPSR.pdf

• https://www.iovisor.org/technology/ebpf (quite old)

37

References

• Suchakrapani Sharma, “Trace Aggregation and Collection with eBPF” (2017)
https://hsdm.dorsal.polymtl.ca/system/files/eBPF-5May2017%20(1).pdf

• How to use eBPF for accelerating Cloud Native applications
https://cyral.com/blog/how-to-ebpf-accelerating-cloud-native/

• Thomas Graf, “Cilium - BPF & XDP for containers” (2016)
https://www.slideshare.net/Docker/cilium-bpf-xdp-for-containers-66969823

• Thomas Graf, “eBPF - Rethinking the Linux Kernel” (2020)
https://www.slideshare.net/ThomasGraf5/ebpf-rethinking-the-linux-kernel

• Thomas Graf, “BPF & Cilium - Turning Linux into a Microservices-aware Operating
System” (2018) https://www.slideshare.net/ThomasGraf5/bpf-cilium-turning-
linux-into-a-microservicesaware-operating-system

38

